Brain Dynamics, Reward, & Mocap

Howard Poizner and David Peterson

I. MC/BDL Developments

A. Science meets Art

B. VR System Development
a. Multimodal VR
b. Mocap-EEG-fMRI

II. Project 2.1.3 Update

(With Scott Makeig & Terry Sejnowski)

Multimodal VR & integration with fMRI

Virtual Reality

Panoramic HMD

Haptic Robot

Eye Tracker

VR + Motion Capture

+MRI

MRI Glove

MRI HMD with Eye-tracker

Artifact Removal

before

EEG data from a simultaneous EEG-fMRI experiment before (left) and after (right) the application of artifact removal.

after

224

225

Brain Dynamics, Dopamine, & Reward-Based Learning [Project 2.1.3]

Simultaneous recording of EEG and Movement

 Reward-based learning & Computation Modeling in normals and <u>dopamine depleted</u> patients

 Simultaneous recording of <u>EEG and Movement</u> during <u>reward-based learning</u> in normals

 Simultaneous recording of EEG and Movement during rewardbased learning in dopamine depleted patients

Time Scales, Dopamine, & Behavior

Wolfram Schultz, *Annual Review of Neuroscience*, 2007, p.259

"Dopamine is involved in mediating the reactivity of the organism to the environment at *Different Time Scales*, from fast impulses related to reward, via slower changes with uncertainty, punishment, and possibly movement, to the tonic enabling of postsynaptic motor, cognitive, and motivational systems deficient in Parkinson's disease."

Brain Dynamics in Rewarded Learning

David A. Peterson¹, Daniel T. Lotz², Alice Ahn², Scott Makeig^{1,3}, Eric Halgren⁴, Terrence J. Sejnowski^{1,5}, Howard Poizner^{1,2}

¹Institute for Neural Computation, UCSD
 ²Department of Cognitive Science, UCSD
 ³Swartz Center for Computational Neuroscience
 ⁴Department of Radiology, UCSD
 ⁵Computational Neurobiology Laboratory, Salk Institute

Basal ganglia mediate cortical oscillations

Experimental Paradigm

What aspects of **ensemble dynamics** important for rewarded learning?

Images and rewards

2 phases, 256 trials each

Probability (reward) *j* Initial Phase Reversal Phase

1	0.25	1.00
2	0.50	0.75
3	0.75	0.50
4	1.00	0.25

Why model the behavior?

 Infer internal, unobservable "processes" that drive the learning

RL model

<u>Learning</u> from reward prediction error (**PE**):

$$Q_{j}(t+1) = \begin{cases} Q_{j}(t) + \varepsilon [r(t) - Q_{j}(t)] & j \ chosen \\ Q_{j}(t) & o.w. \end{cases}$$

<u>Action selection</u>: Probability of choosing image *k* from {*k*,*m*}:

$$p_k(t) = \frac{1}{1 + e^{-\tau(Q_k(t) - Q_m(t))}}$$
Exploration
vs.
exploitation

Τ

Spectral dynamics & PE sign

11

Spectral dynamics correlated with PE

alpha... slope = -0.14

 $R^2 = 0.016$ p = 0.004

Prediction Error

becy21, IC6

What about PPC?

behavior brain oscillations computational model

becy21, IC = 49

Summary

- Rewarded learning is associated with intra-trial temporal dynamics in macroscopic brain oscillations.
 - putatively driven by PE
 - frontal sources: relative desync in theta and alpha
- Next steps:
 - Spatial selectivity ? (e.g. parietal sources)
 - what is the influence of electrophysiological neuromodulation (e.g. deep brain stimulation) ?

Contributors:

UCSD

- INC: Howard Poizner, Dan Lotz, Alice Ahn, Chris Elliott
- SCCN: Scott Makeig, Klaus Gramann, Julie Onton, Ying Wu, Andrey Vankov
- MIL: Eric Halgren
- Salk: Terry Sejnowski, Jason McInerny

Our Participants !